WEEKLY TEST TYM -01 TEST - 15 Balliwala SOLUTION Date 04-08-2019

[PHYSICS]

1. (c) $\frac{A}{B}=\frac{\text { Force }}{\text { Force }}=\left[M^{0} L^{0} T^{0}\right]$

$$
\begin{aligned}
& C t=\text { angle } \Rightarrow C=\frac{\text { Angle }}{\text { Time }}=\frac{1}{T}=T^{-1} \\
& D x=\text { angle } \Rightarrow D=\frac{\text { Angle }}{\text { Distance }}=\frac{1}{L}=L^{-1} \\
& \therefore \quad \frac{C}{D}=\frac{T^{-1}}{L^{-1}}=\left[M^{0} L T^{-1}\right]
\end{aligned}
$$

2. (d) Maximum error in measuring mass $=0.001 \mathrm{~g}$, because least count is 0.001 g . Similarly, maximum errer in measuring volume is $0.01 \mathrm{~cm}^{3}$.

$$
\begin{aligned}
& \begin{aligned}
\frac{\Delta \rho}{\rho} & =\frac{\Delta M}{M}+\frac{\Delta V}{V}
\end{aligned}=\frac{0.001}{20.000}+\frac{0.01}{10.00} \\
& \\
& =\left(5 \times 10^{-5}\right)+\left(1 \times 10^{-3}\right)=1.05 \times 10^{-3} \\
& \begin{aligned}
\Delta \rho & =\left(1.05 \times 10^{-3}\right) \times \rho \\
& =1.05 \times 10^{-3} \times \frac{20.000}{10.00}=0.002 \mathrm{~g} \mathrm{~cm}^{-3}
\end{aligned}
\end{aligned}
$$

3. (d) $\frac{C^{2}}{g}=\frac{L^{2} T^{-2}}{L T^{-2}}=[L]$
4. (c) Graphically, the area of $v-t$ curve represents displacement

$$
S=\frac{1}{2} v_{\max } t_{1} \quad \text { or } \quad t_{1}=\frac{2 S}{v_{\max }}
$$

$$
\begin{aligned}
& 2 S=v_{\max } t_{2} \quad \text { or } \quad t_{2}=\frac{2 S}{v_{\max }} \\
& 5 S=\frac{1}{2} v_{\max } t_{3} \quad \text { or } t_{3}=\frac{10 S}{v_{\max }} \\
& v_{\mathrm{av}}=\frac{\text { Total displacement }}{\text { Total time }}=\frac{S+2 S+5 S}{\frac{2 S}{v_{\max }}+-\frac{2 S}{v_{\max }}+\frac{10 S}{v_{\max }}} \\
& \frac{v_{\mathrm{av}}}{v_{\max }}=\frac{8 S}{14 S}=\frac{4}{7}
\end{aligned}
$$

Alternative:

$\frac{v_{\mathrm{av}}}{v_{\max }}=\frac{\text { Total displacement }}{2\left(\begin{array}{l}\text { Total displacement } \\ \text { during acceleration } \\ \text { and retardation }\end{array}\right)+\left(\begin{array}{l}\text { Displacemet } \\ \text { during unifor } \\ \text { velocity }\end{array}\right)}$
$\frac{v_{\mathrm{av}}}{v_{\text {max }}}=\frac{8 S}{2(S+5 S)+2 S}=\frac{8}{14}=\frac{4}{7}$
5. (b) $\sin \alpha=\frac{u}{v}=\frac{\sqrt{3}}{2} \Rightarrow \alpha=60^{\circ}$

$\Rightarrow \theta=90^{\circ}+\alpha=150^{\circ}$
6. (a) For the person to be able to catch the ball, the horizontal component of velocity of the ball should be same as the speed of the person, i.e.,

$$
v_{0} \cos \theta=\frac{v_{0}}{2} \quad \text { or } \cos \theta=\frac{1}{2} \text { or } \theta=60^{\circ}
$$

7.

$$
\begin{array}{ll}
x_{A}=x_{B} \\
10.5+10 t=\frac{1}{2} a t^{2} & a=\tan 45^{\circ}=1 \\
t^{2}-20 t-21=0 & t^{2}-21 t+t-21=0 \\
t(t-21)+1(t-21)=0 \Rightarrow & t=21,-1 \\
\text { rejecting negative value }
\end{array} \quad \begin{aligned}
& t=21 \mathrm{sec} .
\end{aligned}
$$

8. From triangle $B C O \quad \Rightarrow \quad B C=4$

From triangle $B C A \quad \Rightarrow \quad A C=\sqrt{2^{2}+4^{2}}=2 \sqrt{5}$
$A C=u_{1} t, \quad B C=u_{2} t$
$\therefore \quad \frac{u_{1}}{u_{2}}=\frac{A C}{B C}=\frac{2 \sqrt{5}}{4}=\frac{\sqrt{5}}{\sqrt{4}}$

9. After 10 sec

$$
x_{B}=100+(u t)+\frac{1}{2}(2) t^{2}=100+20 t+t^{2}
$$

A will be ahead of B when

$$
\begin{aligned}
& x_{B}<x_{A} \quad \Rightarrow \quad 100+20 t+t^{2}<40 t \\
& \Rightarrow \quad t^{2}-20 t+100<0 \\
& t^{2}-10 t-10 t+100<0 \\
& t(t-10)-10(t-10)<0 \\
& (t-10)^{2}<0
\end{aligned}
$$

which is not possible
10.

Height of the building

$$
\begin{aligned}
& H=h_{1}+h_{2} \\
=\quad & \frac{1}{2} g t^{2}+u t-\frac{1}{2} g t^{2} \\
=\quad & u t=60 \mathrm{~m} .
\end{aligned}
$$

11. Velocity of rain = Velocity of man + Relative velocity of rain OR gives the actual velocity.
$\tan 30^{\circ}=\frac{\mathrm{VR}}{\mathrm{OR}}$
$=\frac{1}{\sqrt{3}}=\frac{6}{\mathrm{OR}}$

OR $=6 \sqrt{3}$
$\therefore \quad$ Hence, the answer is (B)
12. $t=\frac{A B}{\sqrt{5^{2}-3^{2}}}=\frac{3}{4}=45$ minutes
$\therefore \quad$ Answer is (C)
13. Disance covered in 15 minutes $=5 \mathrm{~km} / \mathrm{hr} \times \frac{15}{60} \mathrm{hr}=1.25 \mathrm{~km}$

Extra distance along river covered $=\sqrt{(1.25)^{2}-(1)^{2}}=0.75 \mathrm{~km}$
Velocity of river $=\frac{0.75}{(15 / 60) \mathrm{hr}}=\frac{0.75 \times 4}{1}=3 \mathrm{~km} / \mathrm{hr}$
$\therefore \quad$ Answer is (B)
14. Let velocity of man in still water be v and that of water with respect to ground be u. Velocity of man downstream $=v+u$

As given, $\sqrt{v^{2}-u^{2}} t=(v+u) T$
$\Rightarrow \quad\left(v^{2}-u^{2}\right) t^{2}=(v+u)^{2} T^{2}$
$\Rightarrow(\mathrm{v}-\mathrm{u})^{2}=(\mathrm{v}+\mathrm{u}) \mathrm{T}^{2}$

$\therefore \quad \frac{v}{u}=\frac{t^{2}+\mathrm{T}^{2}}{\mathrm{t}^{2}-\mathrm{T}^{2}}$
$\therefore \quad(C)$ is correct option

[CHEMISTRY]

16. 34 electrons
17.
18. Bond orders are : $\mathrm{He}_{2}^{+}=0.5 ; \mathrm{O}_{2}^{-}=1.5 ; \mathrm{NO}=2.5 ; \mathrm{C}_{2}^{2-}=3.0$
19.
20. XeF has 8 electrons in valence shell. In $\mathrm{XeF}_{2}, \mathrm{XeF}_{4}$ and XeF_{6}, two sigma bonds, four sigma bonds and six sigma bonds are respectively formed. Hence, in $\mathrm{XeF}_{2} 3$ pairs of electrons are left, in $\mathrm{XeF}_{4} 2$ pairs of electron are left and in XeF_{6} only 1 pair of electron is left.
21. Each f^{1} and C^{2} are forming two sigma bonds. Hence, both are sp-hybridised.
22. CO has triple bond $: \overline{\mathrm{C}} \equiv \stackrel{+}{\mathrm{O}}: \mathrm{CO}_{2}$ has double bonds $\mathrm{O}=\mathrm{C}=\mathrm{O}$,
CO_{3}^{2-} has $\mathrm{C}-\mathrm{O}$ bond intermediate between single and double bond.
23. In methane C -atom is sp^{3}-hybridized with 25 s -character. In ethene, it is sp^{2} with 33 s -character has to be less than 25 (actual value is 21.43)
24. Bond orders are : $\mathrm{O}_{2}^{-}=1.5, \mathrm{NO}=2.5, \mathrm{C}_{2}^{2-}=3.0$
25.

26.
27. Bond order of N_{2}^{2-} and N_{2}^{2+} is 2.

Bond order of N_{2}^{2-} and N_{2}^{2+} is 2.5
Bond order of N_{2} is 3
28. Bond orders of $\mathrm{O}_{2}^{2-}, \mathrm{O}_{2}^{-}, \mathrm{O}_{2}$ and O_{2}^{+}are 1, 1.5, 2 and 2.5 respectively. (Please, refer to the text article no. 5.25)

